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A1 How to train UniNovo

A1.1 Vector operations

Before we describe the training of UniNovo, we first define the following vector operations. Let V
and W be Boolean vectors with n elements.

– |V | is the number of elements in V (i.e., n).
⇒ For V = (0, 1, 0, 1, 0), |V | = 5.

– 〈V 〉 is the number of non-zero elements in V .
⇒ For V = (0, 1, 0, 1, 0), 〈V 〉 = 2.

– V ·W denotes the elementwise multiplication between V and W .
⇒ For V = (0, 1, 0, 1, 0) and W = (1, 1, 1, 0, 0), V ·W = (0, 1, 0, 0, 0).

– Given an integer k, a vector V k is a vector obtained by shifting all elements of V by k. More
formally, V k is a vector of cardinality n whose elements are given by

V k(i) =

{
V (i− k) if 1 ≤ i− k ≤ n
0 otherwise

(1)

for i = 1, · · · , n.
⇒ For V = (0, 1, 0, 1, 0), V −2 = (0, 1, 0, 0, 0) and V +1 = (0, 0, 1, 0, 1).

A1.2 Description of the training

UniNovo takes the PSMs in the training dataset T and learns important ion types and features
automatically. The training of UniNovo consists of two stages: ion type selection and feature de-
tection.

Ion type selection In the ion type selection step, the frequently observed ion types are selected
from the training dataset using the offset frequency function (OFF) introduced by Dancik et al.
1999 [1]. And the probabilities in the ion type matrices for the ion types (e.g., α and β in Figure 1
(a)) are learned.

Given an ion type δ, OFF outputs the empirical probability that a δ-ion peak is observed for
a fragmentation site in the training dataset. We define OFF as follows: The input to OFF is the
training dataset T . OFF is defined by

OFF (δ) =

∑
(P,S)∈T

# δ-ion peaks in S︷ ︸︸ ︷
〈S · P δ〉∑

(P,S)∈T
〈P 〉︸︷︷︸

# fragmentation sites in P

. (2)

Out of all ion types δ satisfying −38 < δ < 38, we pick 8 ion types δ with the highest values of
OFF (δ). We denote the set of the selected ion types as ion type set ∆ (see Table A2 for the list of
the ion types in the ion type set for each dataset).

After learning the ion type set ∆, we learn α and β for each ion type in ∆. Given an ion type
δ, α is simply given by α := OFF (δ). β can be obtained by

β =

∑
(P,S)∈T

# non-δ-ion peaks in S︷ ︸︸ ︷
〈S〉 − 〈S · P δ〉∑

(P,S)∈T
|P | − 〈P 〉︸ ︷︷ ︸

# non-fragmentation sites in P

. (3)



We also learn the empirical probability that a random mass i is a fragmentation site. To learn
this probability, first an element in the peptide of each PSM is selected randomly. The probability
is estimated by the frequency of the selected elements being fragmentation sites. The learned
probability is called prior fragmentation probability and is denoted by p.

Feature detection step The feature detection step aims to detect the features that the peaks of
the ion types in ∆ often satisfy. Besides, the probabilities in the feature-ion type matrices (µ and
ν in Figure 1 (a)) are learned.

The features are detected using OFF with a slight modification, which is called a feature fre-
quency function (FFF). Given an ion type δ and a feature f , FFF outputs the empirical probability
that a δ-ion peak satisfies f .

The inputs to FFF are the training dataset T , an ion type δ, and a feature f . FFF for δ ∈ ∆
is defined by

FFF (δ, f) =

∑
(P,S)∈T

# δ-ion peaks satisfying f in S︷ ︸︸ ︷
〈S · S−f · P δ〉∑

(P,S)∈T
〈S · P δ〉︸ ︷︷ ︸

# δ-ion peaks in S

. (4)

We select all features f such that FFF (δ, f) > 0.15 and −38 < x < 38 for δ ∈ ∆. The selected
features are called an offset features. Since the features satisfying FFF (δ, f) > 0.15 are selected
regardless of the size of the feature set, the total number of features in UniNovo is not fixed. In
general, the total number was about several thousands.

In addition, the features f = m(a), a ∈ A are selected, and the selected features are called
linking features. A linking feature characterizes two peaks whose mz difference equals to an amino
acid mass. The set of selected offset and linking features is named as the feature set and is denoted
by F .

Given an ion type δ ∈ ∆ and a feature f ∈ F , we learn µ and ν. µ is simply given by FFF (δ, f)
whereas ν is given by

ν =

∑
(P,S)∈T

# non-δ-ion peaks satisfying f in S︷ ︸︸ ︷
〈S · S−f 〉 − 〈S · S−f · P δ〉∑

(P,S)∈T
〈S〉 − 〈S · P δ〉︸ ︷︷ ︸

# non-δ-ion peaks in S

. (5)



A2 How to extend UniNovo algorithm for the realistic model

A2.1 Changes in the model/definitions

(a)

# Partition Precursor mass (×121.6)

1 < 9
2 9-13
3 13-17
4 17-20
5 > 20

(b)

I(Si) Intensity rank of a peak i

10 1-10
9 11-20
8 21-30
7 31-40
6 41-50
5 51-60
4 61-70
3 71-80
2 81-90
1 91-150
0 ≥150

(c)

R(u, t) u/t

−∞ ∞
−4 5-∞
−3 2.5-5
−2 1.7-2.5
−1 1.3-1.7
0 1.0-1.3
1 0.8-1.0
2 0.6-0.8
3 0.4-0.6
4 0.2-0.4
5 0.0-0.2

Table A1. Partitioning of spectra and peak intensities. (a) partitioning of the spectra by their parent mass. 121.6
is the average amino acid mass. (b) the intensity level of a peak i in a spectrum S, denoted by I(Si). The intensity
level of a peak is decided by its intensity rank (the ith highest intensity peak = rank i). (c) Definition of the intensity
ratio function R : R× R→ Z. This function is used to define a feature.

In practice, UniNovo considers the model in which

– the mass tolerances of MS1 and MS2 are given by users

– the mono-isotopic masses of amino acids are used (e.g., the mass of Gly is 57.021464), and the
m/z positions of peaks are real numbers (when MS1 tolerance is smaller than 0.1 Da; otherwise,
integer amino acid masses and m/z values are used)

– all spectra are divided into 5 groups according to their parent mass ranges (see Table A1 (a))

– the intensities of peaks are divided into 11 levels (see I(Si) in Table A1 (b))

– only 150 peaks with high intensities are considered per a spectrum

– both N - and C- terminal ions of any charge values up to 4 are considered (e.g., b, y, b2 ions)
(see Table A2)

The peak i in a spectrum S refers to the peak whose m/z value equals to i within MS1 mass
tolerance.1 The raw intensity of the peak i is denoted by Si and the intensity level of it is by I(Si).
If multiple such peaks are present, simply pick the highest intensity one. UniNovo learns/applies
all parameters (α, β, µ, and ν) separately for different groups of spectra. Also, the parameters are
learned separately for the fragmentation sites corresponding to the enzyme specific amino acids (e.g.,
C-terminal K or R for tryptic peptides). Except those amino acids, the current version of UniNovo
does not take amino acid specific information (e.g., the different propensities of amino acids or the
effect of proline on fragmentations) into account. Many studies have reported that different amino
acids alter the fragmentation characteristics of MS/MS spectra [11,4]. By considering amino acids
differently as in PepNovo, the performance of UniNovo could be improved; however, the number
of annotated spectra necessary for the training of UniNovo should be also increased by orders of
magnitude to avoid overfitting, which may weaken the universal property of UniNovo. A possible

1 Even if a different mass tolerance is used, no fundamental change is necessary for UniNovo algorithm. We only
need to redefine what the definition of peak i in a spectrum is.



Dataset Ion types in the ion type set ∆

CID2
δ y b y + i∗ b−H2O b+ i b−NH3 y −H2O y −NH3

OFF (δ) 0.74 0.62 0.47 0.35 0.29 0.26 0.16 0.14

CIDL2
δ y b y + i b+ i b−H2O b−NH3 y −H2O y −NH3

OFF (δ) 0.66 0.57 0.40 0.30 0.24 0.21 0.16 0.14

CIDA2
δ b y b+ i y + i b−H2O b−NH3 y −H2O y −NH3

OFF (δ) 0.60 0.55 0.34 0.27 0.19 0.15 0.14 0.14

ETD2
δ z + i z z + 2i∗∗ y c c−H c+ i y + i

OFF (δ) 0.56 0.47 0.29 0.25 0.23 0.22 0.16 0.15

ETD3
δ c z z + i c+ i y z + 2i c−H c+ 2i

OFF (δ) 0.56 0.51 0.46 0.36 0.25 0.20 0.15 0.13

ETDL3
δ c z z + i c+ i y z + 2i c+ 2i a+ i

OFF (δ) 0.66 0.60 0.44 0.42 0.20 0.18 0.15 0.12

ETDL4
δ c z + i z c+ i z + 2i z2 c2 y

OFF (δ) 0.44 0.33 0.33 0.28 0.20 0.17 0.15 0.13

ETDA3
δ c z z + i c+ i z + 2i y c+ 2i a+ i

OFF (δ) 0.60 0.50 0.40 0.38 0.19 0.16 0.13 0.13

ETDA4
δ c z + i z c+ i z + 2i z2 c2 c+ 2i

OFF (δ) 0.42 0.32 0.30 0.27 0.21 0.16 0.15 0.12

HCD2
δ y b y + i a b−H2O y −H2O y −NH3 y2

OFF (δ) 0.52 0.21 0.20 0.10 0.08 0.08 0.08 0.04

HCD3
δ y b y2 y + i y2 + i a b−H2O b+ i

OFF (δ) 0.26 0.16 0.12 0.07 0.06 0.05 0.03 0.02

Table A2. The ion types in the ion type set ∆ and their OFF values for different datasets. (∗, ∗∗): y + i denotes
the y-ion of a fragmented peptide with one isotope, and z + 2i denotes the z-ion of a fragmented peptide with two
isotopes.

idea to mitigate such a negative effect may be to cluster amino acids into a small number of groups
(e.g., basic and non-basic groups) and to train the parameters separately for each group, which will
be included in our future work.

The definition of a feature f is changed so that it can accommodate the changed model. Before
we define a feature f , define the intensity ratio function R(u, t), a function from two real numbers
u, t to an integer, as in Table A1 (c). A feature f = (t, x, r, T, z1, z2) is now a vector with 6 elements
(instead of a single integer in the manuscript): intensity t, mass offset x, intensity ratio r, terminal
T , base peak charge z1, and support peak charge z2. The mass offset x represents a mass gain/loss,
and T shows if the feature represents the relation between the ions of the same terminal (T = 0)
or not (T = 1). Given a spectrum S from a peptide of mass n,2 a peak i in S is said to satisfy
f = (t, x, r, T, z1, z2) if I(Si) = t and there exists another peak j such that R(Si, Sj) = r where j is
given by

j =

{
z1·(i−ε)+x

z2
+ ε if T = 0

n−(z1·(i−ε)+x)
z2

+ ε otherwise.

where ε is the mass of a proton. With the new definition, a feature can characterize the m/z (by
specifying x) and intensity relation (by specifying t and r) between two peaks of ion types of
different terminus (by specifying T ) and/or different charges (by specifying z1 and z2).

2 The peptide mass n can be calculated from the parent mass of the spectrum.



A2.2 Iterative training/running for better ion type inference

The FPV ’s for different ion types can be used to assign a probability distribution ρ (over ion types
in ∆ and noise) to each peak such that ρ(δ) is the probability that the peak is a δ-ion peak and
ρ(noise) is the probability that the peak is not a δ-ion peak for all δ ∈ ∆ (termed a noisy peak).

The distribution ρ is meaningful only when it is far from a uniform distribution. However, if the
spectra in the training dataset T contain abundant noisy peaks or peaks of different ion types with
similar characteristics, the distribution often has a uniform-like distribution. Thus, it can be more
informative given a training dataset consisting of spectra containing few noisy peaks and peaks of
different ion types with distinctive characteristics.

To obtain such a training dataset, we generate processed PSMs from PSMs in the (original)
training dataset. Given an ion type set ∆ and the distribution ρ of the peak i in a spectrum S, the
processed spectrum S′ is a spectrum satisfying

S′i =
∑
δ∈∆

ρ(δ) ·OFF (δ) (6)

for all i such that Si > 0. Since the intensity of a peak in the processed spectrum S′ is a weighted
summation of the distribution ρ of the peak, it is likely that the peaks in S′ are clustered according
to the ion types of the peaks (see Figure A1). Denote the (original) training dataset as T1. The
ion type set ∆ and feature set F1 are learned from T1. For each PSM (P, S) in T1, the processed
spectrum S′ is generated from S using features in F1, yielding a processed PSM (P, S′). The resulting
set of the processed PSMs is denoted as T2. Likewise, we repeat generating Ti+1 using features in
Fi learned from Ti for i = 1, · · · , 4.3 The feature sets F1, · · · , F4 are kept by UniNovo.

An input spectrum undergoes the same iterative process. Denote an input spectrum as S1. We
generate the (processed) spectrum Si+1 from Si using features in Fi learned from Ti for i = 1, · · · , 4.
The FPV is generated based on the distributions ρ after 5 iterations.

3 After 5 iterations, no significant changes were observed in the resulting training dataset.
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Fig. A1. Ion type distribution of peaks according to their intensity ranks for raw (a) and processed (after 5
iterations) spectra (b). CID2 dataset was used. A peak with the intensity rank i is the ith highest intensity peak
in the spectrum. In raw spectra, different ion types are spread over the intensity ranks of peaks. Even in case of
the highest intensity peaks, only 60% of them are y-ion peaks. The ion types in processed spectra are well clustered
according to the intensity ranks of peaks. For example, 90% of the highest intensity peaks are y-ion peaks in processed
spectra.



A3 How to derive the posterior probability Pr(Pi = 1|Si = 1 and Si+f =
1 for f ∈ H)

A3.1 One ion type (δ = 0) and independent features

If H is an empty set, it reduces to Pr(Pi = 1|si = 1). By Bayes’s rule, we have

Pr(Pi = 1|si = 1) ∝ Pr(Pi = 1) · Pr(si = 1|Pi = 1) = p · α. (7)

Similarly, we obtain Pr(Pi = 0|si = 1) ∝ (1−p)·β. Since Pr(Pi = 1|si = 1)+Pr(Pi = 0|Sii = 1) = 1,
we obtain

Pr(Pi = 1|si = 1) =
Pr(Pi = 1|si = 1)

Pr(Pi = 1|si = 1) + Pr(Pi = 0|si = 1)
=

p · α
p · α+ (1− p) · β

. (8)

Denote this probability as γ. Then, we obtain

Pr(Pi = 1|si = 1 and si+f = 1 for f ∈ H) (9)

∝ Pr(Pi = 1|si = 1) · Pr(si+f = 1 for f ∈ H|Pi = 1, Si = 1) (10)

= γ · Pr(si+f = 1 for f ∈ H|Pi = 1, si = 1) (11)

= γ ·
∏
f∈H

Pr(si+f = 1|Pi = 1, si = 1) (12)

= γ ·
∏
f∈H

µf (13)

where µf denotes the probability µ associated to the feature f . The equality between (11) and
(12) is obtained from the assumed independence between features. Likewise, we can show Pr(Pi =
0|si = 1 and si+f = 1 for f ∈ H) ∝ (1 − γ) ·

∏
f∈H

νf where νf is the probability ν (Figure 2 (a))

associated to the feature f . Therefore, we obtain

Pr(Pi = 1|Si = 1 and Si+f = 1 for f ∈ H) = Pr(Pi = 1|si = 1 and si+f = 1 for f ∈ H) (14)

=

γ ·
∏
f∈H

µf

γ ·
∏
f∈H

µf + (1− γ) ·
∏
f∈H

νf
. (15)

A3.2 Multiple ion types and multiple but independent features

Next, we consider the case in which multiple ion types are present in the ion type set ∆. For an
ion type δ ∈ ∆, the expression (15) can be generalized as

Pr(Pi−δ = 1|Si = 1 and Si+f = 1 for f ∈ H) =

γδ ·
∏
f∈H

µδf

γδ ·
∏
f∈H

µδf + (1− γδ) ·
∏
f∈H

νδf
(16)

where γδ denotes γ of the ion type matrix for the ion type δ, and µδf (νδf ) denotes µ (ν) for the

feature f and the ion type δ. Denote the obtained probability in (16) as πδi . For each ion type δ,
we derive a fragmentation probability vector FPV δ as

FPV δ
i =

{
πδi+δ if Si+δ = 1

0 otherwise
(17)



for i = 1, · · · , n − 1. FPV δ
n is again defined to be 1. The final fragmentation probability vector

FPV is generated by taking elementwise (weighted) summation of FPV δ’s for δ ∈ ∆. The weights
are decided by an MMSE (minimum mean squared error) estimation method as described below.

For simplicity, we start with the case in which the ion type set is given by ∆ = {δ, δ′}. Given
a spectrum , UniNovo generates 2 fragmentation probability vectors (FPV δ and FPV δ′), and the
final FPV is generated by elementwise weighted summation of these fragmentation probability
vectors.

The weights are learned from the training dataset T as follows: For each PSM (P, S) in T , we first
generate FPV δ and FPV δ′ . Given an index i, we consider three different cases for (FPV δ

i , FPV
δ′
i ):

only FPV δ
i is non-zero, only FPV δ′

i is non-zero, and both are non-zero. The weights are learned
separately for each case (and are multiplied separately for each case when we generate the final
FPV ). We describe the last case (both are non-zero) only. Let X denotes the sample mean of X.

For instance, FPV δ
i denotes the sample mean of FPV δ

i .
The autocorrelation matrix R is defined as

R =

[
FPV δ

i FPV
δ
i FPV δ

i FPV
δ′
i

FPV δ′
i FPV

δ
i FPV δ′

i FPV
δ′
i

]
and the crosscorrelation matrix C is defined as

C =

[
FPV δ

i Pi

FPV δ′
i Pi

]
.

The weight vector is given by
W = R−1C.

When more than two ion types are present in the ion type set ∆ = {δ1, · · · , δl}, UniNovo
generates l fragmentation probability vectors, FPV δ1 , · · · , FPV δl . The weight vectors are learned
as above separately for 2l − 1 different cases for (FPV δ1 , · · · , FPV δl): only FPV δ1

i is non-zero,

only FPV δ2
i is non-zero, · · · , all FPV δ1

i to FPV δl
i are non-zero.

A3.3 Multiple ion types and multiple dependent features:

The above derivations of the posterior probability are valid only if the features in H are mutually
independent. However, in practice, some features are often strongly correlated (e.g., a feature de-
scribing the loss of a water molecule and another describing the loss of two water molecules). Thus,
out of all features that a peak i satisfies, a few “statistically meaningful” features that are weakly
correlated are automatically selected for H.

To select statistically meaningful and weakly correlated features out of H, we first define the
divergence of a feature f . We again assume that only one ion type δ = 0 is present in the ion
type set ∆. If two probabilities Pr(Pi = 1|Si = 1) and Pr(Pi = 1|Si = Si+f = 1) are similar
to each other, we can conclude that the feature f is not helpful to determine the fragmentation
sites. The two probabilities are given by p ·α and γ · µf by the equation (1) in the manuscript. We
define two distributions B and C over δ = 0 and −∞ such that B(0) = p · α and C(0) = γ · µf .
B(−∞) := 1 − B(0) and C(−∞) := 1 − C(0) are called noise probabilities. The divergence of the
feature f is defined by the Kullback-Leibler (KL) divergence between B and C.

When more than one ion types are considered, we define two distributions B and C over ion
types δ ∈ ∆ and −∞ such that B(δ) = p ·αδ and C(δ) = γδ · µδf . The noise probabilities for B and
C are given by 1 −

∑
δ∈∆

B(δ) and 1 −
∑
δ∈∆

C(δ), respectively. The divergence of f is defined by the



KL divergence between B and C. The features in the feature set F are ranked according to the
divergences (the higher divergence, the higher rank) after the training of UniNovo.

Given a peak i, all features that the peak i satisfies are divided into different groups as follows:
First, the linking features make one group. Second, the offset features make the second group (in
the extended model described in the section A2, the offset features are again divided into different
groups according to the combination of terminal T , base peak charge z1, and support peak charge
z2.

4) Then, per each group of features, we select the highest ranking feature for the set H. All
features in H are assumed to be independent.

The features in H are assumed to be independent and the FPV is obtained as above. Figures
A2 and A3 in the section A9 (blue bars) show that the FPVi reliably estimates the probability
that Pi = 1 for various types of spectra.

4 The rationale behind this selection is that two ions of the different terminus or charge states are likely to be weakly
correlated each other.



A4 How to derive the accuracy of reconstructions using Hunter’s bound [5]

To estimate the accuracy of a reconstruction (i.e., a probability that the reconstruction is correct),
we first learn one more statistic from the training dataset T : EdgeAccuracy of edges in the spectrum
graph. Given an edge (i, j), EdgeAccuracy(i, j) is an empirical probability of (i, j) being correct.
More precisely, each edge (i, j) is characterized by the following quantities: FPVi, FPVj (quantized
into 10 levels), and the minimum amino acid number whose total mass equals to j − i. Call these
quantities of an edge the property of the edge. From the training dataset T , we obtain the empirical
probability that an edge with a property is correct for all possible properties. Then, given an edge
(i, j) (generated from a query spectrum), denote the learned empirical probability for the property
of the edge by q. The EdgeAccuracy(i, j) is given by min(q, FPVi, FPVj).

5

The accuracy of a reconstruction is then derived from FPVi of its vertices i and EdgeAccuracy(i, j)
of its edges (i, j) using an upper bound for the probability of a union proposed by Hunter, 1976 [5].
Given a reconstruction r = {i0, · · · , il} on the spectrum graph (of a spectrum S from an unknown
peptide P ), we consider a probability space (Ωr,Fr, P rr) whose sample space Ωr is given by

Ωr = {Pi = x : i ∈ r, x = 0, 1}. (18)

The set of events Fs is composed of all subsets of Ωr. Let Prr(Pi = 1) = FPVi, and Prr(Pi =
1, Pi′ = 1) = EdgeAccuracy(i, i′) for i, i′ in r. The probability we want to derive can be written as
Prr(

⋂
i∈r

Pi = 1).

To use Hunter’s bound, we construct a complete graph6 E whose vertex i represents the event
Pi = 1 for i ∈ r. The weight of an edge (i, j) is defined by

w(i,j) = Prr(Pi = 1 or Pj = 1) (19)

= Prr(Pi = 1) + Prr(Pj = 1)− Prr(Pi = 1, Pj = 1) (20)

= FPVi + FPVj − EdgeAccuracy(i, j). (21)

Hunter’s bound gives us the following bound:

Prr(
⋂
i∈r

Pi = 1)) ≥
∑
i∈r

Prr(Pi = 1)−
∑

(i,j)∈TE

w(i,j) (22)

=
∑
i∈r

FPVi −
∑

(i,j)∈TE

(FPVi + FPVj − EdgeAccuracy(i, j)). (23)

where TE is the minimum spanning tree on the graph E . The expression in (23) defines the accuracy
of the reconstruction r.

5 FPVi estimates the probability that the vertex i is correct, and EdgeAccuracy(i, j) estimates the probability
both the vertices i and j are correct. To construct a probability space based on these estimates (see below),
EdgeAccuracy(i, j) is forced to be smaller than both FPVi and FPVj .

6 An undirected graph in which every pair of distinct vertices is connected by a unique edge.



A5 How to merge spectrum graphs generated from spectra of paired
acquisition modes

Given multiple spectrum graphs G1, · · · , Gn, we define a merged spectrum graph G. To define
the spectrum graph G, we need to define the vertices along with their scores. The vertices of G
are given by the union of vertices of the input spectrum graphs. The score of a vertex i in G is

given by
n∑
k=1

Gki . To calculate the accuracy of a reconstruction r on the merged graph G, we also

need to redefine FPV and EdgeAccuracy of G. For each the input spectrum graph Gk, FPVi and
EdgeAccuracy(i, j) are defined for each i and j. The FPVi (EdgeAccuracy(i, j)) of G is simply
defined as the maximum value of these FPVi (EdgeAccuracy(i, j)) of the input spectrum graphs.



A6 How to derive the spectrum accuracy

The spectrum accuracy of a set of reconstructions predicts a probability that at least one of the
reconstructions is correct. Given a set of reconstructions R = {r1, · · · , rN}, we define a variable Di

for i = 1, · · · , N as

Di =

{
1 if ri is correct

0 otherwise.
(24)

We consider a probability space (ΩR,FR, P rR) whose sample space ΩR is defined by

ΩR = {Di = x : i = 1, · · · , N, x = 0, 1}. (25)

The set of events FR is composed of all subsets of ΩR. Given two sequences ri and rj , we define ri,j
as a reconstruction whose vertices are the union of those of ri and rj . For example, r1 = {1, 2, 4, 5}
and r2 = {1, 3, 4, 5}, r1,2 = {1, 2, 3, 4, 5}.

Denote the accuracy of a reconstruction r by Accuracy(r). Let PrR(Di = 1) := Accuracy(ri)
and PrR(Di = 1, Dj = 1) := Accuracy(ri,j) for i, j = 1, · · · , N . We assume that a sequence of
(Bernoulli) random variables D1, D2, · · · , DN forms a Markov chain.7 The probability we want to

estimate can be denoted by PrR(
N⋃
i=1

Di = 1). Since PrR(Di = 1 ∪ Dj = 1) = Accuracy(ri) +

Accuracy(rj)−Accuracy(ri,j), we obtain

PrR(
N⋃
i=1

Di = 1) (26)

= 1− PrR(
N⋂
i=1

Di = 0) (27)

= 1− PrR(D1 = 0)PrR(D2 = 0|D1 = 0) · · ·PrR(DN = 0|DN−1 = 0, · · · , D1 = 0) (28)

= 1− PrR(D1 = 0)
N∏
i=2

PrR(Di = 0|Di−1 = 0) (29)

= 1− PrR(D1 = 0)

N∏
i=2

PrR(Di = 0, Di−1 = 0)

PrR(Di−1 = 0)
(30)

= 1− PrR(D1 = 0)

N∏
i=2

1− PrR(Di = 1 ∪Di−1 = 1)

PrR(Di−1 = 0)
(31)

= 1− (1−Accuracy(r1))
N∏
i=2

1− (Accuracy(ri) +Accuracy(ri−1)−Accuracy(ri,i−1))

1−Accuracy(ri−1)
(32)

where the equality between (28) and (29) is obtained from the Markov chain assumption. The right
hand side of (32) defines the spectrum accuracy of R, denoted by SpectrumAccuracy(R).

7 This assumption is reasonable if two adjacent reconstructions in R are similar each other whereas other recon-
structions are relatively dissimilar, which is often the case since reconstructions in R are sorted in the ascending
order of their scores (see below).



A7 How to generate the output set with a high spectrum accuracy

Using the spectrum accuracy, users can control the accuracy of their output reconstruction sets.
Given parameters SpectrumAccuracyThreshold > 0 and N , UniNovo tries to construct a recon-
struction set R such that SpectrumAccuracy(R) ≥ SpectrumAccuracyThreshold and |R| ≤ N
by selecting both accurate and long reconstructions (long reconstructions are not accurate, in gen-
eral). First UniNovo generates 100 high-scoring reconstructions (the candidate reconstruction set).
The reconstructions in the candidate reconstruction set are sorted by their scores in descending
order. Denote the sorted list of reconstructions as C = {r1, r2, · · · , r100}. A set of reconstructions
R is initialized as an empty set, and an integer MaxLength is initialized as one plus the length of
the longest reconstruction in C. The reconstructions in C whose length are less than MaxLength
are added to R sequentially, starting from r1. When |R| = N or all reconstructions shorter than
MaxLength are added to R, SpectrumAccuracy(R) is calculated. If SpectrumAccuracy(R) ≥
SpectrumAccuracyThreshold, UniNovo outputs R. Otherwise, MaxLength is decreased by 1, R
is again initialized as an empty set, and the above procedure is repeated until MaxLength = 5.
If no output is generated when MaxLength = 5, the input spectrum is declared as a low quality
spectrum and is filtered out.



A8 Parameters for UniNovo, PepNovo+, PEAKS, and pNovo in different
datasets

Table A3 shows the parameters of the tested tools for different datasets. For all tools, no spectrum
quality filtering or charge/parent mass correction, if any, was used. The MS1 and MS2 tolerances
in the 4th and 5th columns are used both for tool parameters and for the error tolerances for the
experiments.



(a)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo CID Trypsin 20 ppm 0.5 Da
PepNovo+ CID Trypsin 0.02 Da 0.5 Da

PEAKS CID Trypsin 20 ppm 0.5 Da

(b)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo CID LysC 20 ppm 0.5 Da
PepNovo+ CID Trypsin 0.02 Da 0.5 Da

PEAKS CID LysC 20 ppm 0.5 Da

(c)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo CID AspN 20 ppm 0.5 Da
PepNovo+ CID None 0.02 Da 0.5 Da

PEAKS CID AspN 20 ppm 0.5 Da

(d)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo ETD Trypsin 20 ppm 0.5 Da
PEAKS ETD Trypsin 20 ppm 0.5 Da

(e)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo ETD LysC 20 ppm 0.5 Da
PEAKS ETD LysC 20 ppm 0.5 Da

(f)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo ETD AspN 20 ppm 0.5 Da
PEAKS ETD AspN 20 ppm 0.5 Da

(g)

Tool Fragmentation method Enzyme specificity MS1 tolerance MS2 tolerance

UniNovo HCD Trypsin 20 ppm 20 ppm
PepNovo+ HCD Trypsin 0.02 Da 0.02 Da

pNovo HCD Trypsin 20 ppm 20 ppm

Table A3. The parameters of UniNovo, PepNovo+, PEAKS, and pNovo for different datasets: (a)
CID2 (b) CIDL2 (c) CIDA2 (d) ETD2 and ETD3 (e) ETDL3 and ETDL4 (f) ETDA3 and ETDA4
(g) HCD2 and HCD3. For all tools, the carbamidomethylation of Cys (C+57) was set as a fixed
modification.



A9 The estimation results for the FPVi and the accuracy
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Fig. A2. The estimation results for the FPVi and the accuracy. The x-axis is the range of the reported FPVi

of a mass or the accuracy of a reconstruction, and the y-axis is the percentage that the corresponding mass is a
fragmentation site or the corresponding reconstruction is correct. Three different types of spectra are tested: (a) CID
trypsin charge 2 (b) ETD trypsin charge 2 (c) HCD trypsin charge 2 (d)CID LysC charge 2 (e) CID AspN charge
2 (see Results section for the dataset description). Each dataset consists of 1,000 annotated spectra from distinct
peptides (identified by MS-GFDB [8] with the peptide level FDR < 1%) . Some of accuracies (green bars) are not
drawn because the sample numbers were too small (< 50). FPVi follows the empirical probability closely (within
5% error). The accuracy tends to slightly underestimate the actual probability, which means that the estimation is
conservative.
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Fig. A3. Figure A2. continued. (a) ETD trypsin charge 3 (b) ETD LysC charge 3 (c) ETD LysC charge 4 spectra
(d) ETD AspN charge 3 (e) ETD AspN charge 4 spectra (f) HCD trypsin charge 3.



A10 The datasets

CID, ETD, and CID/ETD datasets: CID, ETD, and CID/ETD datasets contain LTQ-Orbitrap
spectra (Thermo Fisher Scientific) of trypsin digested peptides from the human HEK293 cell line
generated in Albert Heck’s laboratory (see [8] for details). The original dataset described in [8]
contains the CID/ETD spectral pairs. To obtain the CID dataset, we took only CID spectra from
the original dataset and identified them using MS-GFDB at 1% FDR. Out of the identified CID
spectra, we randomly pick 1,000 doubly charged spectra that represent distinct tryptic peptides.
ETD dataset was generated similarly, and it consists of 1,000 doubly and 1,000 triply charged ETD
spectra of distinct tryptic peptides. CID/ETD dataset contains 1,000 pairs of doubly charged and
1,000 pairs of triply charged CID/ETD spectra of distinct tryptic peptides.

CIDL, CIDA, ETDL, and ETDA datasets: To benchmark UniNovo on spectra of non-
tryptic peptides, we analyzed 4 spectral datasets generated in Joshua Coon’s laboratory (see [10]
for details). From yeast protein samples, the authors in [10] generated CID and ETD spectra of
LysC or AspN digested peptides on a hybrid linear ion trap-orbitrap mass spectrometer (Thermo
Fisher Scientific). From the identified CID spectra of LysC (AspN) digested peptides, we randomly
pick 1,000 doubly charged spectra representing distinct peptides to generate CIDL (CIDA) dataset.
In case of ETD spectra, we selected 1,000 charge 3 and 1,000 charge 4 spectra representing distinct
LysC (AspN) digested peptides to generate ETDL (ETDA) dataset.

HCD dataset: To generate HCD dataset, we used HCD spectra reported by [3]. The original
spectra were acquired by LTQ-Orbitrap Velos (Thermo Fisher Scientific) using one of three different
fragmentation methods (CID, ETD, and HCD) from trypsin digested peptides of HEK293 whole
cell lysates. We took only the HCD spectra from the original dataset and identified them using
MS-GFDB. Out of all identified spectra, we randomly sampled 1,000 doubly charged and 1,000
triply charged spectra of distinct tryptic peptides.



A11 Venn diagrams of the number of correctly sequenced spectra

(a) (b)

(c)

Fig. A4. The Venn diagrams of the number of correctly sequenced spectra for CIDL2 dataset. (a) N = 1 (b) N = 5
(c) N = 20
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(c)

Fig. A5. The Venn diagrams of the number of correctly sequenced spectra for CIDA2 dataset. (a) N = 1 (b) N = 5
(c) N = 20
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Fig. A6. The Venn diagrams of the number of correctly sequenced spectra for ETD2 dataset. (a) N = 1 (b) N = 5
(c) N = 20
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Fig. A7. The Venn diagrams of the number of correctly sequenced spectra for ETDL3 dataset. (a) N = 1 (b) N = 5
(c) N = 20
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Fig. A8. The Venn diagrams of the number of correctly sequenced spectra for ETDL4 dataset. (a) N = 1 (b) N = 5
(c) N = 20
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Fig. A9. The Venn diagrams of the number of correctly sequenced spectra for ETDA3 dataset. (a) N = 1 (b)
N = 5 (c) N = 20
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Fig. A10. The Venn diagrams of the number of correctly sequenced spectra for ETDA4 dataset. (a) N = 1 (b)
N = 5 (c) N = 20
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Fig. A11. The Venn diagrams of the number of correctly sequenced spectra for HCD3 dataset. (a) N = 1 (b)
N = 5 (c) N = 20



A12 Analysis of Standard dataset

A12.1 Standard dataset

Since all the spectra in the datasets in Table 1 are identified by a single search engine (i.e., MS-
GFDB), the experimental results from those datasets may be positively/negatively biased toward
specific tools tested. Thus, we benchmarked UniNovo, PepNovo+, and PEAKS using an additional
dataset (named as Standard dataset) reported in [7] containing spectra identified by Sequest [2]
and PeptideProphet [6]. Standard dataset contains 1,388 doubly charged CID spectra (generated by
Thermo Electron LTQ) of distinct peptides collected from the Standard Protein Mix database [9].
As mentioned in [7], the parent masses of the spectra in Standard dataset were corrected according
to the Sequest identifications; the spectra have high resolution MS1 and low resolution MS2.

A12.2 Results

For Standard dataset, we measured the number of correctly sequenced spectra and the average
length of the correct reconstructions for N = 1, 5, and 20. All experimental parameters for Standard
dataset were the same as for CID2 dataset, except that non-enzyme specificity was used for PEAKS
(because many of spectra in Standard dataset are from peptides with non-enzymatic cleavages). The
results obtained from Standard dataset were compared with those from CID2 dataset because both
datasets contain doubly charged CID spectra. Figure A12 shows the results from Standard dataset.
Similar to the results from CID2 dataset, UniNovo found slightly more correctly sequenced spectra
when N = 20 and slightly less when N = 1, 5 than PepNovo+ (Figure A12 (a)). PEAKS found the
smallest number of correctly sequenced spectra. Figure A12 (b) shows that the length of correct
reconstructions for PepNovo+ was longer than UniNovo or PEAKS as in CID2 dataset. We also
drew the Venn diagrams of the correctly sequenced spectra for Standard dataset in Figure A13. The
Venn diagrams for Standard dataset and CID2 dataset (Figure 3 (a)-(c)) had similar percentages
of overlaps of spectra (20.3%, 36.5%, 44.3% vs. 23.2%, 45.2%, 54.3% for N = 1, 5, 20) even if the
percentages for Standard dataset were smaller than for CID2 by 3-10%. Overall, essentially similar
results were obtained for Standard and CID2 datasets, which suggests that no significant bias
toward specific tools was introduced in the experiments using the datasets in Table 1.
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Fig. A12. The results from Standard dataset (a) the number of correctly sequenced spectra (b) the average length
of correct reconstructions
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Fig. A13. The Venn diagrams of the number of correctly sequenced spectra for Standard dataset. (a) N = 1 (b)
N = 5 (c) N = 20



A13 Evaluation of the spectrum graph for different datasets/tools

To evaluate the spectrum graph of UniNovo for different spectrum types, we plotted ROC (Receiver
Operating Characteristic) curves of vertices (i.e., plausible fragmentation sites) in the spectrum
graphs from each dataset. Given a spectrum graph, we first ranked all vertices in such a way that
the xth highest scoring vertex has the rank x. Then we chose 20 top ranking vertices (excluding
source and sink vertices), and calculated true positive rates and false positive rates at various rank
thresholds. For a rank threshold x, the true positive rate was calculated by # of correct vertices of
rank less than x divided by # of correct vertices, and the false positive rate was by # of incorrect
vertices of rank less than x divided by # of incorrect vertices.8

Figure A14(a) shows the ROC curves for the datasets in Table 1, except the ones of spectral
pairs. For CID2 dataset, the ROC curves of spectrum graphs generated by MS-GFDB and Pep-
Novo+ were also drawn. The ROC curve of UniNovo for CID2 dataset (blue circled line) is signifi-
cantly better than those of PepNovo+ and MS-GFDB (black and black dashed lines). For instance,
at the false positive rate of 0.1, the true positive rate of UniNovo was 0.7 while both MS-GFDB’s
and PepNovo+’s were about 0.4. As the ROC curves suggest, HCD2 (ETDL4) datasets represents
the most (the least) suitable datasets for de novo sequencing. Other datasets can be ranked as:
HCD2 (the best)→CID2 → ETD2 → CIDL2 ≈ CIDA2 ≈ ETDL3 ≈ ETDA3 ≈ ETDA4≈ HCD3
→ ETD3 ≈ ETDL4 (the worst).

The above ROC curve evaluates the sensitivity/specificity of the scoring functions with 20
highest ranking vertices in the spectrum graph. However, if only few of the 20 vertices are correct
- in other words, most fragmentation sites are not selected for 20 vertices - such an evaluation
may be pointless. Thus, we also measured the fraction of all fragmentation sites that are actually
included in the correct vertices of rank less than x (i.e., the number of correct vertices of rank less
than x divided by the number of all fragmentation sites). The same measurement was done for
CID2 dataset by PepNovo+ and MS-GFDB. Figure A14 (b) shows that UniNovo (blue circled line)
correctly detected 20% and 40% more fragmentation sites within top 20 vertices than PepNovo+
and MS-GFDB (black and black dashed lines), respectively. Together with the ROC comparison,
one can deduce that UniNovo detects more fragmentation sites and scores them more specifically
than PepNovo+ or MS-GFDB. Also one can infer that the good performance of PepNovo+ shown
in Figure 2 is obtained by reranking of the reconstructions using the sequence specific features.
From Figure A14 (b), we can evaluate each dataset in terms of the fraction of correctly predicted
fragmentation sites as: HCD2 (the best)→CID2→ CIDL2→ CIDA2 ≈ ETD2 ≈ ETDL3 ≈ ETDA3
→ HCD3 → ETDA4 → ETD3 → ETDL4 (the worst).

8 The error tolerance for vertices was set to 0.5 Da except for HCD2 and HCD3 datasets. For HCD2 and HCD3
datasets, the error tolerance was set to 20 ppm.
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Fig. A14. (a) ROC curves of vertices (i.e., plausible fragmentation sites) in the spectrum graphs. Per each spectrum
graph, the vertices are ranked by their scores so that the xth highest scoring vertex has the rank x. We took 20 highest
ranking vertices per each spectrum graph, and calculated the true positive rate and the false positive rate. Given a
rank threshold x, the true (false) positive rate is given by # of correct (incorrect) vertices of rank less than x divided
by # of correct (incorrect) vertexes. Using UniNovo, ROC curves for the datasets in Table 1 (except the ones of
spectral pairs) were generated. We also generated ROC curves using PepNovo+ (black line) and MS-GFDB (black
dashed line) for CID2 dataset.
(b) The fraction of correctly predicted fragmentation sites. Given a rank threshold x, we measured what fraction of
all fragmentation sites are included in the correct vertices of rank less than x.



A14 How many PSMs (i.e., identified spectra) are required to train UniNovo

Even if a relatively small number of PSMs are required to train UniNovo, still there should be
a sufficient number of PSMs in the training dataset to avoid possible overfitting. To see how
many PSMs are required for training of UniNovo, we generated three different training datasets,
each of which was formed by randomly selecting 5,000 PSMs in the training dataset (consisting
of about 1,9000 PSMs) used to train the parameters for CID tryptic doubly charged spectra.
From the generated training datasets, we learned three different parameter sets. Then for CID2
dataset, we repeated the experiments to measure the number of correctly sequenced spectra and the
average length of correct reconstructions using each parameter set. Figure A15 shows the results
for N = 1, 5, and 20. Figure A15 (a) illustrates that the number of correctly sequenced spectra for
the different parameter sets were almost the same each other, with the maximum difference of 14.
The maximum difference of the average length of correct reconstructions was only 0.5, suggesting
that overfitting did not occur. When we use a smaller number of PSMs (about 4,000), the results
started to diverge throughout different parameter sets (data not shown). Therefore, we recommend
to use at least 5,000 PSMs (per charge state) in the training dataset to avoid overfitting.
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Fig. A15. The number of correctly sequenced spectra (a) and the average length of correct reconstructions (b) for
CID2 dataset using differnt parameter sets learned from different training datasets consisting of 5,000 PSMs each.
Even though a small number of PSMs were used to train each parameter set, the results are consistent each other
suggesting that overfitting did not occur.



References

1. V. Dancik, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner. De novo peptide sequencing via tandem
mass spectrometry. Journal of Computational Biology, 6(3-4):327–342, 1999.

2. J. K. Eng, A. L. McCormack, and J. R. Yates. An approach to correlate tandem mass spectral data of peptides
with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry,
5(11):976–989, 1994.

3. C. K. Frese, A. F. M. Altelaar, M. L. Hennrich, D. Nolting, M. Zeller, J. Griep-Raming, A. J. R. Heck, and
S. Mohammed. Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an
LTQ-Orbitrap velos. J. Proteome Res., 10(5):2377–2388, 2011.

4. Y. Huang, J. M. Triscari, G. C. Tseng, L. Pasa-Tolic, M. S. Lipton, R. D. Smith, and V. H. Wysocki. Statistical
characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns.
Analytical Chemistry, 77(18):5800–5813, 2005.

5. D. Hunter. An upper bound for the probability of a union. Journal of Applied Probability, 13(3):597–603, 1976.
6. A. Keller, A. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical model to estimate the accuracy of

peptide identifications made by ms/ms and database search. Anal. Chem., 74:5383–92, Jan 2002.
7. S. Kim, N. Bandeira, and P. A. Pevzner. Spectral profiles, a novel representation of tandem mass spectra and their

applications for de novo peptide sequencing and identification. Molecular & Cellular Proteomics, 8(6):1391–1400,
2009.

8. S. Kim, N. Mischerikow, N. Bandeira, J. D. Navarro, L. Wich, S. Mohammed, A. J. R. Heck, and P. A. Pevzner.
The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: Applications to database
search. Molecular & Cellular Proteomics, 9(12):2840 –2852, 2010.

9. J. Klimek, J. S. Eddes, L. Hohmann, J. Jackson, A. Peterson, S. Letarte, P. R. Gafken, J. E. Katz, P. Mallick,
H. Lee, A. Schmidt, R. Ossola, J. K. Eng, R. Aebersold, and D. B. Martin. The standard protein mix database: A
diverse data set to assist in the production of improved peptide and protein identification software tools. Journal
of Proteome Research, 7(1):96–103, 2008.

10. D. L. Swaney, C. D. Wenger, and J. J. Coon. Value of using multiple proteases for Large-Scale mass Spectrometry-
Based proteomics. J. Proteome Res., 9(3):1323–1329, 2010.

11. V. H. Wysocki, G. Tsaprailis, L. L. Smith, and L. A. Breci. Mobile and localized protons: a framework for
understanding peptide dissociation. Journal of Mass Spectrometry, 35(12):1399–1406, 2000.


	Appendix for UniNovo : a universal tool for de novo peptide sequencing
	Kyowon Jeong, Sangtae Kim, and Pavel A. Pevzner

